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The Faber polynomials for a region of the complex plane are of interest as a
basis for polynomial approximation of analytic functions. In this paper we deter
mine the location, density, and asymptotic behavior of the zeros of Faber polyno
mials associated with the closed region bounded by the m-cusped hypocycloid with
parametric equation

I
z = exp(i9) + ( ) exp(-(m - 1)i9),

m - I
o ~ 9 < 21T, m = 2,3,4, ....

For m = 2, the Faber polynomials are simply the classical Chebyshev polynomials
for the segment [ - 2, 2]; thus our results can be viewed as a study of the algebraic
and asymptotic properties of generalized Chebyshev polynomials. Ii:' 1994 Academic

Press, Inc.

1. INTRODUCTION

Let E be any compact set (not a single point) in the complex plane C
whose complement with respect to the extended complex plane C is simply
connected. The Riemann mapping theorem asserts that there exists a
conformal mapping w = <P( z) of C\ E onto the exterior of a circle
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ZEROS OF FABER POLYNOMIALS

Iw I = PE in the w-plane. For a unique choice of PE' we insist that

411

4>(00) = 00,

so that, in a neighborhood of infinity,

4>'( (0) = 1

a l a 2
4>(z) = z + ao + - + 2" +

z z
(1.1 )

With this normalization, the constant PE is the logarithmic capacity or
transfinite diameter of the set E.

The polynomial part of 4>( z )n, denoted by Fn( z) = Z n + ., . , is called
the Faber polynomial of degree n generated by the set E. (For a survey of
the theory of Faber polynomials see [C2].)

Let

b l b 2
1/'(w) = w + bo + - + 2 +

w w
( 1.2)

be the inverse function of w = 4>( z). Then 1/'(w) maps the domain
Iwl > PE conformally onto C \ E and Faber [F] proved that

_1/'_'(_w_)_ = I: _Fn_(z_)
1/'(w)-z wn + 1 '

n~O

Iwl > PE' z E E. ( 1.3)

For the unit disk the Faber polynomial of degree n is z n and the
corresponding Faber series for an analytic function is its Taylor series
about the origin.

If E = [ - 2, 2], then

with inverse

4>( z) =
z+~

2

For n ~ 1, the polynomial part of 4>(z)n is the same as the polynomial
part of

which reduces to 2 cos nO, when w = e i8
• Thus the Faber polynomials are

the same as the classical monic Chebyshev polynomials Tn( x) =

2 cos n(cos - I(X /2» for the segment [ - 2,2].
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The following properties for Tn( z) are well known:

(j) The Tn ( Z )'s satisfy the 3-term recurrence relation

(ii) All zeros of Tn( z) are located on ( - 2, 2) for every n ~ 1.

(iii) The zeros of {Tn< Z )}~~ 1 are dense on [ - 2, 2] and have limiting
distribution

1 1
dJ.L(t) = - dt,

1T~
tE[-2,2),

which is the equilibrium distribution for E = [ - 2, 2].

(iv) For n ~ 1, the polynomial Tn( z) satisfies the second-order dif
ferential equation

We remark that the segment E = [ - 2, 2] can be considered as a
two-cusped hypocycloid with parametric equation

Z = exp(iO) + exp( -iO), O~O<21T.

As we shall see, the Faber polynomials for the closed region H m bounded
by the m-cusped hypocycloid with parametric equation

1
Z = exp(iO) + exp( -em - l)iO),

(m - 1)

O~O<21T,m=2,3,4, ... (1.4)

enjoy certain properties that are similar to Chebyshev polynomials. For
example, these polynomials also satisfy a three-term m-th order recur
rence formula and their zeros lie on the m line segments joining the cusps
to the origin (See Figs. 1-6). In particular, the m cusp points attract zeros
of the Faber polynomials, and for m ~ 3, the zeros of Fn(z) stay away
from the analytic portions of the boundary.

The paper is organized as follows: Section 2 describes some basic
algebraic properties of Fn(z). In Sections 3 and 4 we determine the
location, density, and distribution of zeros of Fn(z). To illustrate our
results we have plotted in Figs. 1-6 the zeros of certain Faber the
polynomials associated with m-cusped hypocycloids (m = 3,4,5,6).
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FIG. I. Zeros of Fn(z) of 3-cusped hypocycloid when n = 38.
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FIG. 2. Zeros of Fn( z) of 3-cusped hypocycloid when n = 39.
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FIG. 3. Zeros of F/z) of 4-cusped hypocycloid when n = 39.
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FIG. 4. Zeros of Fn(z) of 4-cusped hypocycloid when n = 40.



ZEROS OF FABER POLYNOMIALS 415

3,-----.----.------,----r----,.------,

2

o

-1

-2

32o-1-2
-3 '--__..L---__--'-__--'- '--__-'-__--'

-3

FIG. 5. Zeros of Fn<z) of 5-cusped hypocycloid when n = 40.
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FIG. 6. Zeros of Fn<z) of 6-cusped hypocycloid when n = 40.
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We remark that in recent years there has been a growing interest in
studying the Faber polynomials for specific regions. Ellacott [E] computed
the coefficients of some Faber polynomials for the semi-disk Iz I :<:; 1,
Re z ~ 0 and for the square IRe z I :<:; 1, 11m z I :<:; 1. Coleman and Smith
[CSj as well as Gatermann, Hoffman, and Opfer [GHOj have studied the
coefficients of the Faber polynomials on circular sectors. For starlike
domains, Papamichael, Soares, and Stylianopoulos [PSS] describe a simple
process for computing approximations to. the Faber polynomials.

The asympototic distribution of the zeros of Faber polynomials for
general sets E was recently investigated by Kuijlaars and Saff [KS]. In
particular, they showed that if E is bounded by a piecewise analytic curve
that has a singularity other than an outward cusp, then there is a
subsequence of Faber polynomials whose zeros have limiting distribution
equal to equilibrium distribution of E (in particular, evey point of the
boundary of E attracts zeros of Faber polynomials).

2. ALGEBRAIC PROPERTIES OF Fn(z)

Here and throughout the remainder of this paper, F/ z) = Fn(z; Hm )

denotes the Faber polynomial of degree n associated with the closed
region Hm bounded by the m-cusped hypocycloid given in 0.4).

In this section we derive some basic algebraic properties of these Faber
polynomials and show that F/z) satisfies an m-th order linear differential
equation.

PROPOSITION 2.1. Let w = exp(2rri/m) denote the primitive m-th root
of unity. Then we have

k = O,I, ... ,m - 1, n = 0,1, ....

Proof It is easy to verify that for m = 2,3, ... ,

1
z = 1Jr(w) = w + ------;

(m - l)w m - 1

maps Iwl > 1 conformally onto C \ H m • It follows from (1.3) that the
Fn( z)'s satisfy the equation

1Jr1(W) wm
- 1 = ;, Fn(z)

g (w z) := = -----;-------- L..
, 1Jr(w) - Z wm + 1 - zw m + w/(m - 1) n~() wn+ 1 •

(2.1 )
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It is easy to see that

417

k = 1,2, ... ,m - 1,

and using this identity in (2.1), the result follows immediately. I

PROPOSITION 2.2. For n = 1,2, ... , we have

FAD) "* 0 <=> n = 0 mod(m).

Furthermore,

(2.2)

k(-1) m
Fmk(O) = k'

(m - 1)
k = 1,2, .... (2.3)

Proof Let z = 0 in (2.1). Then

w m - 1 00 Fn(O)

wm+\ + wj(m - 1) = n'fo wn+ 1 '
Iwl > 1.

Expanding the left-hand side as a series in w- n and comparing the
coefficients of w -n, we get

Fo = 1, Fn(O) = 0, n "* 0 mod(m),

(-I)k m
Fmk(O) = k "* 0, k = 1,2, .... I

(m - 1)

PROPOSITION 2.3. The polynomials Fn( z) satisfy the recurrence relation

with the initial conditions

(2.4)

Fo(z) = m,

Furthermore, for each n ~ 0,

where eJ>\(z), eJ>iz), ... , eJ>m(z) are the roots of the equation

1
w m -zwm -\ + -- = O.

m - 1

(2.5)

(2.6)
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Note that it is convenient here to take Fo(z) == m instead of Fo(z) == 1.
We remark that (2.6) has m distinct roots except when z is a vertex of
Hm ; that is, z = wkm/(m - 0, k = 0, ... , m - 1. We also note that the
representation (2.5) extends the classical representation of Chebyshev
polynomials for [ - 2, 2] mentioned in the Introduction.

Proof Since z = <P(z) + 1/(m - O<P(z)m-l, we have

m( )m+n-l m( )n+m <P( z (z'¥ Z = '¥ Z + ---
m - 1

and by taking the polynomial parts of the left-hand and right-hand sides
and using Proposition 2.2, it is easy to see that the Fn( z )'s satisfy the
relation (2.4).

The characteristic equation of (2.4) is

1
wm

- zw m
-

I + --- = O.
m - 1

Clearly it has m solutions, say <P,(z), <P/z), ... , <Pm(z), and the functions

satisfy the relation (2.4) with the same initial conditions. I

PROPOSITION 2.4. Let

v :=F(~)
n n m -1'

Then

n = 0,1,2, ....

for n = 0,1,2, ....

In order to prove Proposition 2.4, we need the following lemma:

LEMMA 2.1. [Cl]. Let

b l b 2
pew) = w + bo + - + -2 +

W W

Fn ( 1/'( w)) = w n + I: an,kW-k,

k~1

Iwl > 1,

Iwl > 1,
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where an, k are the so-called Grunsky coefficients. Then

419

k-I n-I

an,k+1 = an+I,k - 1: bjan,k-j + L bjan-j,k - b k + n , (2.7)
j=1 j=1

with initial values al,k = b k , aj,l = jbj , for k ~ 1, j ~ L
Furthermore, if bk ~ 0 for all k = 0,1, ... , then an k ~ 0 for all n, k.

Proof of Proposition 2.4. Using (2.4), we see that vn satisfies the
recurrence relation

with initial values

m 1
v,,+m = m _ 1 v,,+m-l - m _ 1 v" (2,8)

Vo = m,

Define

r o := m - 1,

(
m )2 ( m )m-l

V 2 = m - 1 , ... , Vm - 1 = m - 1

00

rn := I: a",k' n = 1,2, ... ,
k=1

where, as in Lemma 2.1, an k are the Grunsky coefficients associated with
P(w), with initial values '

al,k == bk , k = 1,2, ... ,

We observe that the coefficients of mapping function

1
z = pew) = w + ------:

(m - l)w m - 1

are

1
bm - 1 = ---, b" = 0, n ~ m.

m - 1

Clearly,

For all n > 1 the series Ek=Jan,k converges absolutely by Theorem 4.4 in
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[e2]. Taking the sum of both sides of (2.7) for k = 1,2, ... yields

or

n-]

rn + 1 - rn = E bj(rn - rn _ j ) + L. bj(rn + 1) - (n + I)bn · (2.9)
j=l j=n

Replacing n (n ~ 1) by n + m - 1 in (2.9) gives

m
'n+m = --'n+m-l - --'n'm-I m-I

n=1,2, .... (2.10)

For n = 0, (2.10) is valid since we defined '0 = m - 1. We verify that

mk - (m - I)k

'k= (m-I)k
for 1 ~ k ~ m - 1 (2.11)

by induction on k.
For k = 1, '1 = l/(m - 1) = (m - (m - l))/(m - 1).
For k = 2, '2 = (2m - 1)/(m - 1)2 = (m 2 - (m - 1)2)/(m - 1)2,

from (2.9).
Assume that (2.11) holds for 1 ~ k ~ I ~ m - 2. We show that it holds

for k = I + 1. Substituting n for I in (2.9) and using our assumption yields

'1+1 ='1 + bm-I('1 + 1)

m l -(m-1)1 1 (m l -(m-1)1 )
-------,1----, + -- 1 + 1

(m-I) m-I (m-l)

ml + 1 - (m - 1)1+1

(m-1)I+l

We now obselVe that

,o+l=m, 'k + 1 = (m ~ 1 ) k, for 1 ~ k ~ m - 1,

m 1
'n+m + 1 = --('n+m-l + 1) - --('n + 1),

m-l m-1
n = 0,1 ....
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Comparing this with (2.8) gives
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Vn = 1 + rn , for n = 0, 1,2, ....

Since bk ~ °for all k = 0,1, ... , it follows from Lemma 2.1 that for all
n,k

Hence rn ~ 0, and thereby on ~ 1 for n = 0,1,.... I

Remark. For m = 2, 3, and 4, the values of Fn( z) for each n at the
vertex z = m /(m - 1) can be easily determined from (2.8). When m = 2,
then F)2) = 2, for all n = 0,1,2, .... When m = 3, we get Fn(3/2) =

2 + (-1/2)n, for all n = 0,1,2, ... , and for m = 4, we obtain

where A := (- 1 + fi i) / V3.

PROPOSITION 2.5. The Faber polynomial Fn(z) of degree n ~ 1 for Hm
satisfies the following m-th order linear differential equation,

[
1 1 m-2 ]

--Dm + --;;;-(n - zD) n (n + mk + (m - l)zD) Fn = 0,
m - 1 m k=O

(2.12)

where D := d/dz.

Proof Setting y = e71"i/m(m - l)1/m w and x = _e71"i/m(m - 1)1/mz,
Eq. (2.6) becomes

ym +xym-I - 1 = O.

By using the Mellin transform

(2.13)

it is shown in [H, p. 85] that for Ix I sufficiently small, y(x)n satisfies the
equation

(
d)m n ( d ) n-dx y(x)=p-xdx-my(x), (2.14)
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(
n+m ? )m-2(n - (m - I)? )

p(O:= --+- fl -(m-l)+k
m m k~() m

is a polynomial of degree m. From the relations between y and w, as well
as x and z, Eq. (2.12) is an immediate consequence of (2.5) and (2.14).

I

3. LoCATION OF ZEROS OF Fn(z)

In this section we prove that the zeros of Fn(z) = Fn(z; Hm ) lie on m
rays emanating from the origin.

THEOREM 3.1. For each n ~ 1, all zeros of F/z) are located on the set

Sm = {xw k ; 0S X < ~, k = 0,1,2, ... ,m - 1, m~ 2}, (3.1)
m - 1

where w := e21Ti / m.

Our proof of Theorem 3.1 was inspired by a method due to Uchimura
[U]. Some careful modifications of this method and some results from
Section 2 are needed to prove the theorem.

Proof For z = 0, we know from Proposition 2.2 that for n = 1,2, ... ,

Fn(O)*-O=n=O mod(m).

For z *- 0, we consider Gn(z) := Fn(z)/zn. It follows from (2.4) that

G()(z) = m, G](z) = 1, G 2(z) = 1, ... , Gm_](z) = 1,

1
Gn+m(z) = Gn+m_](z) - (m _ l)zm Gn(z).

We now define Un(x) by the recurrence relation

(3.2)

with the initial conditions

U2(x) = 1, ... , Um_](x) = 1
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x = 0 =zm = (~)m,
m - 1

x ~ 00 = z ~ 0,

423

(3.3)

We show by induction that every zero of Un(x) is a positive real number.
We first prove that Un(O) > 0 for any n ~ O. Notice that

By Propositions 2.1 and 2.4 we obtain for n = 0, 1,. ,.,

(3.4)

Fn(m/(m - 1)
---------;n~ > O.
(m/(m - 1)

(3.5)

Next we observe from (3.2) that the degree of ~(x) is 0 for 0 ~ j ~
m - I, the degree of Um+/x) is 1 for 0 ~ j .$ m - I, and, in general, the
degree of Unm +/ x) is n for 0 .$ j .$ m - 1. Also, the signs of the leading
coefficients of Unm+j(x) (0.$ j .$ m - 0 are (-on, Furthermore,
Unm +/x) satisfies the recurrence relation

where

(3.6)

Let xnm+j,i (O.$j ~ m - 1,1.$ i ~ n) be the zeros Unm+/x). We now
proceed to prove that every zero of Unm+/x) is a positive real number by
induction on nand j. We divide our induction into several steps.

Step 1. For n = 1 and 0 .$ j ~ m - I, we have
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and so Um+j(X) = 1 - a(m + j), and

X m + j , I =
1

m + j

(m - 1)(m-Il

O::;;j::;;m-l.

Thus it suffices to show that

1

m + m - 1

i.e.,

(m - l)(m-l)

----->0,
mm

(
m )m 2m - 1

m-l > m-l

Using an elementary Bernoulli inequality,

(3.7)

b > 1, m > 1,

for b = m/(m - 1) we get (3.7). Furthermore, we note that

o<xm+m-I,I <xm+m- 2,1 < ... <xm.l'

Step 2. For n = 2 and °::;; j ::;; m - 1, we have

U2m +j(X) = U2m +/- I(x) - aUm+j(x).

(i) For j = 0, we have

U2m(X) = U2m - I(X) - aUm(x).

Recall that U2m(0) > 0, and note that

U2m(X2m-I,I) = -aUm(X 2m _ I ,I) < 0,

U2m (Xm,l) = U2m - 1(Xm,l) < 0,

because x2m _ I. I < X m, I from Step 1. Since the sign of the leading coeffi
cient of U2m(x) is positive, there exists a zero of U2m between °and
x 2m _ I, I and a zero between xm. 1 and 00. More precisely we have

o < X2m, I < X2m. 2 ,

where

X2m. 1 < X2m - I, I ,

(ii) For j = 1, we have

U2m +I(X) = U2m(x) - aUm+l(x).
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Note that U2m + 1(0) > 0 and

U2m+l(x2m,l) = -aUm + I(X 2m ,l) < 0,
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because X 2m • 1 <Xm + I• 1 (X 2m • 1 <X2m - 1• 1 <Xm + I • 1 by (j) and Step 1).
Furthermore,

because X 2m •2 > Xm+I,1 (X 2m,2 > x m . 1 > X m + I • 1 by (j) and Step l). Also,

U2m+I(Xm+I,I) = U2m(Xm+I.I) < 0,

because x 2m. 1 < X m + I. 1 < X 2m. 2' Since the sign of the leading coefficient
of U 2m + 1 is positive, we see that it has a zero between 0 and x 2m. I and a
zero between X 2m,I and X 2m ,2' Consequently, we have

o < X 2m + 1.1 < X 2m + 1,2 ,

and

X 2m + l • i < X 2m . i ' for i = 1,2; X m + l • i - 1 < X 2m + I ,; for i = 2.

(ij) Fix s (l ~ s ~ m - 2) and assume that for all 1 .::;; j .::;; s we have

0< X 2m +j • 1 < X 2m + j • 2 '

o < X 2m +j,; < X 2m +j _I. i' i = 1,2,

Xm +j • i - I < X 2m + j ,;, i = 2.

We show that these properties hold for the zeros of U2m + s + I(X).
Now

and so

for i = 1,

because X 2m +s,1 <xm+s+I,l (X 2m +s. 1 <X 2m +s - I ,1 <X 2m . 1 <xm+s+I,1 by
the assumption and Step 1). Also

for i = 2,

because X 2m +s,2 > x m +s. 1 > x m +s + 1• 1 from our assumption. Since X 2m +s,1

< X m +s +1.1 < X 2m +s,2' we have

for i = 1.
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Note that the sign of the leading coefficient of U2m +s + I is positive and
U2m +s + I(O) > O. Thus U2m +s +lx) has a zero between °and X 2m +s,I' and
a zero between x 2m +s, I and x 2m +5,2 such that

0< X 2m +s + I ,1 < X 2m +s + I ,2'

and

X2m+s+l,i < X 2m +s ,i for i = 1,2,

X m +s +l,i-1 < X 2m +s + 1,i' for i = 2,

We have therefore proved that the zeros of U2m +/x) (j = 0,1,2, ... ,
m - 1) have the properties

°<x2m +i ,1 <x2m +i ,2'

°< x 2m + m - 1,i < x 2m +m - 2,i < ... < X 2m ,i'

and

X 2m ,1 <X 2m -1. 1' X 2m +i - 1,i < Xm+i,i'

for i = 1,2,

for i = 1,

Xm+i,i-l < x 2m +i ,i' for i = 2.

Step 3. For fixed n ~ 1 and j = 0,1,2, ... , m - 1, we assume that the
n zeros of Unm +i satisfy

0< xnm+i,1 < x nm +i ,2 < ... < xnm+i,n'

i = 1,2, ... , n - 1, °:::; j :::; m - 1,

0< xnm+m-1,i < x nm + m - 2,i < ... < xnm,i'

Xnm,i < x(n-l)m+m-l,;,

X nm +i - 1,; < x(n-l)m+i,i'

and for 2 :::; i :::; n,

i=I,2, ... ,n,

n ~ 2, i = 1,2, ... ,n - 1,

(3.8)

(3.9)

(3.10)

(3.11)

0< x(n-l)m+i,i-l < x nm +i . i ' O:::;j:::;m-l. (3.12)

We show that (3.8)-(3.12) hold for n + 1, and 0 :::; j :::; m - 1.
We know that

(i) For j = 0, we have

Recall that ~n+l)m(O) > O. By (3.9) we have x nm + m - 1,; < xnm,i' Also
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(3.10) and (3.12) give xnm,i <xnm+m-I,i+1 for i = 1,2,.,.,n - 1. There
fore

if i is odd,

if i is even.

Also

if i is odd,

if i is even.

Note that the signs of the leading coefficients of l.'<n+l)m(X) and Unm+j(x)

are, respectively, ( _l)(n + I) and ( _l)n. So there exists a zero of l.'<n + l)m(X)

between 0 and x nm + m - I,1' a zero between xnm+m-1,i and x nm +m - 1, i+l

(i = 1,2, ... ,n -1) and a zero between xnm+m-I,n and 00. Thus there
exist n + 1 zeros of l.'<n+l)m(X) with the properties

o <X(n+l)m,l <x(n+l)m,2 < ... <x(n+1)m,n+l'

and

X(n+l)m,i < xnm+m-1,i' Xnm+m-I,i < Xnm,j, 1 ~ i ~ n (3.13)

Xnm,i-I < x(n+l)m,j,

(ii) For j = 1, we have

for 2 ~ i ~ n + 1. (3.14)

Combining (3.13) and (3.9) yields x(n+l)m,i < xnm+m-1,i < xnm+1,i' i =

1,2, ... , n. Also (3.9) and (3.14) give x nm + l,n < xnm,n < x(n + l)m, n + 1 and.
xnm+I,i-1 <xnm,i-I <x(n+l)m,i for i = 2,3, ... ,n + 1. Thus

Also

-aUnm+1(X(n+l)m,i) < 0,

-aUnm+1(X(n+l)m,j) > 0,

if i is odd,

if i is even.

if i is odd,

if i is even.
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Using the same argument as in (i), we see that there exist n + 1 zeros of
Urn + 1)m + 1 with the properties

o <X(n+l)m+l,1 <x(n+l)m+I,2 < '" <x(n+l)m+l,n+l'

o <x(n+1)m+l,i <x(n+1)m,i' fori = 1,2, ,n + 1,

x(n+l)m+l,i <xnm + 2,i <xnm+1,i' i = 1,2, ,n (m ~ 3)

because x(n+l)m+l,i < x(n+l)m,i < xnm+m-1,i S x nm + 2,i < xnm+I,i from
(3.13) and (3.9). Also

Xnm+1,i-l < x(n+l)m+l,i' for i = 2,3, ... , n + 1.

(iii) Fix s (l s ssm - 2), and assume that for all 0 s j s s the
zeros of Urll + I)m +j have the properties.

and

o <x(n+1)m+j,1 <x(n+l)m+j,2 < ... <x(n+l)m+j,n+I'

0< x(Il+I)m+j,i < x(Il+I)m+j-l,j, for 1 sis n + 1,

X(Il+l)m+j,i <xnm+j+1,i' i = 1,2, ... ,n,

(3.15)

(3.16)

(3.17)

Xnm+j,i-l < x(n+l)m+j,i' for i = 2, 3, ... , n + 1. (3.18)

We prove that (3.15)-(3.18) hold for 0 s j s s + 1.
Now

U(n+l)m+s+I(X) = Urn+l)m+,(X) - aUnm+s+1(x).

Recall that Ur n + I)m + s + l 0) > O. By (ii) of this step and (3.17) we have
x(n+ I)m+s,i < X nm + S + I,i' for i = 1,2" .. , n. In the case when s = m - 2,
we have x(n+l)m+m-2,i < x(Il+I)m,i < xnm+m-I,i because of (3.16) and
(3.13). Using (3.9) and (3.18) we get xnm+s+l,i-I <xnm+s,i-I <x(n+l)m+s,i

for i = 2,3, ... , n + 1. Therefore

Urn + I)m +s+ I( x(n + I)m +s,i)

Also

-aUnm+s+,(X(n+l)m+s,;) < 0,

-aUllm + s + 1(X(Il+I)m+s,i) > 0,

if i is odd,

if i is even.

Urn+l)m+s+I(Xnm+s+l,i) = U(n+l)m+s(xnm+s+1,i) < 0,

Urn+l)m+s+'(x nm + s + 1,,) = Urn+l)m+s(X nm +s + I ,,) > 0,

if i is odd,

if i is even.

So there exists a zero of U(n+l)m+s+lx) between 0 and x(n+l)m+s,I' as
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well as a zero between x(n+l)m+s,i and x(n+1)m+s, i+l (i = 1,2, ... ,n).
Note that the sign of the leading coefficient of L{n + 1)m +s+ I(X) is ( _l)(n + 1).

Thus we see that there exist n + I zeros of L{-n + l)m +s+ I(X) such that

0< x(n+l)m+s+1,1 < x(n+l)m+s+I,2 < ... < x(n+l)m+s+I,n+l,

0< x(n+l)m+s+I,i < x(n+l)m+s,j, for 1 S; i s; n + 1,

x(n+l)m+s,i <xnm+s+1,i' i = 1,2, ... ,n,

and for 2 s; i s; n + 1,

Xnm+s+1,i-1 < x(n+l)m+s+l,i'

Combining (i), (ii), and (iii), we have shown that (3,8)-(3.12) holds with n
replaced by n + 1 and °s; j s; m - 1. This completes the induction which
proves that all the zeros of Un(x), n 2 1, are real and positive.

Finally we recall that for z oF 0, Fn(z) = znun(x). Therefore the zeros of
F n( z) are determined by the zeros of Un(x). If the parameter x starts from
zero and tends to plus infinity in the real domain, then the variable z
describes the set Sm' For Z = 0, we know that FJO) oF 0 <=:> n = 0 mod(m).
Therefore we have proved that the zeros of the Faber polynomials Fn(z)

of the m-cusped hypocycloid are located on the set Sm for n = 1,2, ....

I

4. DENSITY AND DISTRIBUTION OF ZEROS OF Fn(z)

In Section 3 we showed that zeros of Fn( z) = Fn( z; Hm) are located on
the set Sm for every n. What can be said about the limiting behavior of the
zeros of Fn(z) as n ~ oo? The answer to this question is provided by the
following theorem.

THEOREM 4.1. (i) The zeros of {Fn(z)}7 are dense in the set Sm'

Oi) Let zn,k' k = 1,2,3, ... ,n, be the zeros of Fn(z). Then for
z E C\ Sm

1 n 1
lim - L = S(z),

n ..... oo n k=1 z - zn,k

where S(z) is the analytic continuation to C\ Sm of the power series

( mk)f
S(z) = L . k z - mk - 1,

k=O k!((m - l)k)!(m - 1)

640/18/3-10

Izi > m/(m - 1),

(4.1 )
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(iii) Let Vn be the normalized counting measure in the zeros of Fn(z);
that is,

1 n

vn := - I: {jz 'n n,k
k=\

where {jz denotes the Dirac delta measure with unit mass at z. If v* is any
weak-star limit measure of {vn}, then the balayage (cf. [L)) of v* to the
boundary of Hm is the equilibrium measure J.L H for Hm'

Consequently, iff is harmonic in the interior~f Hm and continuous on its
closure, then

Proof of (j). From the relation between Fn(z) and Un(x), given in the
proof of Theorem 3.1, we see that proving (j) is equivalent to proving that
the zeros of Un(x) are dense in (0,00). The proof of the latter follows from
the method of proof of Theorem 4.2 in [U], so we omit the details. I

Proof of (ii). Let Let zn.k' k = 1,2,3, ... ,n, be the zeros of Fn(z),
and set

where the root has its principal value 1 at z = 00. Notice that each
function fn(z) is single-valued and analytic in C \ Sm (all its branch points
are in Sm)' Moreover, Un} forms a normal family in C \ Sm and

lim fn( z) = $( z )
n-'~

(4.2)

for z outside Hm (ct. [M, p. 108]). Hence Un} converges to the analytic
continuation of $(z) to C \ Sm' (We again use $(z) to denote this
continuation.)

Taking the logarithmic derivative in (4.2), we get

1 n 1
lim - 1: ---
n-'~ n k~\ z - zn,k

$' (z)

$( z)
( 4.3)

for z E C\Sm' Thus it remains to show that S(z):= $'(Z)/$(z) has the
expansion (4.1). Since S( z) is analytic at oc and S(00) = 0, the expansion of
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S(z) about 00 has the form

431

$' ( z)
S(z) =-

$( z)
( 4.4)

k = 0,1, ....

The coefficients Mk of (4.4) can be evaluated from the formula

1 dw
Mk = -1 tJlk(W)_,

27T Iwl =r> I W
(4.5)

Substituting tJI(w) = w + 1/[(m - Dw m
-)] into (4.5) and using the

Cauchy formula, we get

M
k

= (kl/[(k(m - 1)/m)!(k/m)!(m - l)k/m],

0,

if k = 0 modem),

otherwise,

which yields (4.0. I

Proof of (iii). It follows from (4.2) that for the sup norm on Hm

limsupl/Fnllk': ~ PH
m

= capacity(Hm )·

n---+oo

Hence assertion (iii) is an immediate consequence of Theorem 2.3 of [MS].

I
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